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Data Structures & Algorithms for Geometry

Agenda:
● Assignment #3, part 1 due

● BSP tree overview
• Node storing
• Leaf storing
• Solid-leaf storing

● Creating BSP trees
• Selecting & evaluating split planes
• Classifying polygons w.r.t. split planes
• Splitting polygons
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Binary Space Partition Trees
As the name implies, this is a binary tree where 

each node splits space.
● Each node contains an n-dimensional split plane.

● One child is the positive space of the split plane, 
and the other child is the negative space.

Numerous applications:
● Hidden surface removal

● Constructive solid geometry (CSG)

● Collision detection

● Many, many more
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Types of BSP trees
Three common types of BSP tree:

1. Node storing – object geometry stored in inner 
nodes and leaf nodes.

2. Leaf storing – object geometry stored only in leaf 
nodes.

3. Solid-leaf – positive leaf nodes represent empty 
space, negative leaf nodes represent solid space.
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Node Storing
Auto-partitioning

● Meaning split-planes come from object geometry

Each node stores all object surfaces that are 
coplanar with the split-plane.

Used to be used for surface sorting for software 
rendering
● Doom popularized this technique.

● Not useful for hardware rendering.

● Not good for collision detection, either.
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Leaf Storing
Each inner node stores only the split-plane

● Can be auto-partitioning or general.

● Polygons coplanar to split-planes must be 
consistently sent to the positive or negative space.

Geometry stored only in leaf-nodes.

Generalization of k-d trees, quadtrees, octrees, 
etc.
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SolidLeaf
Used to represent the volume occupied by input 

geometry.
● Every face must be used as a split-plane

● Other planes can also be used as split-planes

Very useful for collision detection
● No need to perform polygon-polygon tests.

● If part of the test polygon is in solid space, there is a 
collision.
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Hybrid SolidLeaf / LeafStoring
Extends solid-leaf tree to store polygons in 

solid-space nodes.
● Each node stores the polygons visible from that 

solid-space.

● Other data can be stored to accelerate eventual 
AABB tests.
• We'll talk about this next week.

Popularized by Quake II and Quake III.
● Called brush-storing trees in Quake terminology.
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Construction Overview
Only 3 steps:

1. Select split-plane.

2. Divide polygons into two groups based on split-
plane.
• This may include dividing polygons that straddle the split-

plane.

3. Repeat on each subgroup.
• As with other subdivision trees, stop splitting when we 

have few enough polygons or reach a deep enough level.
• May also stop if a good split-plane cannot be found.
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Splitplanes
Split-plane selection determines performance of 

final tree
● Just like picking the subdivision of BV hierarchies.

● Ideally we want O(log n) tree depth
• For the same reasons as with regular binary search trees

Two general partition strategies:
● Auto-partition: select planes from the geometry

● General: pick any arbitrary planes

● Hybrid methods also exist
• We'll talk more about these next week.
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Autopartition
Generally easier to implement

● All possible split-planes are known in advance

May result in poor performance
● Any selection of these planes 

will result in numerous 
polygon splits.

● Selecting other planes initially 
may avoid splits.
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Autopartition (cont.)
Auto-partition also performs poorly on convex 

objects.
● By definition, all faces lie on one side of each 

possible plane.

● The result is no splits, but O(n) tree depth.
 If the search goes outside 

early, the search may terminate 
faster than O(log n).
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General Plane Selection
A very hard problem.

● Even harder than finding optimal OBB orientation

● Need to narrow the search space
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General Plane Selection
A very hard problem.

● Even harder than finding optimal OBB orientation

● Need to narrow the search space

Try some of the following:
● Planes aligned to the axes

• Like k-d trees

● Planes through the edge of one polygon and a 
vertex of another

● Allow user selected hint planes.
• Humans can provide good possible planes early on
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Evaluating Splitplanes
Need some metrics to determine which possible 

split-plane is best.
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Evaluating Splitplanes
Need some metrics to determine which possible 

split-plane is best.
● Minimize number of polygons split (a.k.a. least-

crossed)
• In the worst case, each split can create n new planes 

resulting in O(n2) total planes.

● Balance number of polygons in each subtree.
• Using least-crossed can lead to O(n) tree depth.

Reality: neither heuristic works well in isolation.
● Use some linear combination of score from both
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Polygon Classification
Relative to a split-plane, a polygon can be:

a. Completely in positive half-space
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Polygon Classification
Relative to a split-plane, a polygon can be:

a. Completely in positive half-space

b. Completely in negative half-space
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Polygon Classification
Relative to a split-plane, a polygon can be:

a. Completely in positive half-space

b. Completely in negative half-space

c. Coplanar
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Polygon Classification
Relative to a split-plane, a polygon can be:

a. Completely in positive half-space

b. Completely in negative half-space

c. Coplanar

d. Straddling plane



10-November-2007 © Copyright Ian D. Romanick 2007

Polygon Classification
Relative to a split-plane, a polygon can be:

a. Completely in positive half-space

b. Completely in negative half-space

c. Coplanar

d. Straddling plane

Have to be careful with polygons that are 
“close” to the plane.
● Floating point math is not an exact science.  If 

points are close the the split-plane, the polygon 
splitting routine will produce erroneous results.
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Thick Planes
Solve the “close to plane” problem by making 

split-planes thick.
● Points within some small distance, , of the plane 

are considered to be on the plane.
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Polygon Splitting
Split using modified Sutherland-Hodgman 

polygon clipping
● Classify each vertex as in, out, or on.

• Use a 2-bit out-code.

● Each edge is coded with the directed pair of its 
vertex out-codes.

● Out-code pair determines what to do with the edge:
• Add to outside polygon
• Add to inside polygon
• Split and add each half to one polygon
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Polygon Splitting (cont.)
 In first 4 cases, order is unimportant:

● Outside ↔ outside or outside ↔ on – add edge to 
outside polygon

● Inside ↔ inside or inside ↔ on – add edge to inside 
polygon

Only two cases remain:
● Inside → outside

● Outside → inside
• Split edge.  Add one half to each polygon.
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Adding Edges
Real brains of algorithm in code to add edges.

● Easy (common) cases: Edge added to polygon 
shares vertex with last added edge, link the two 
edges.

● Hard case: Edge added to 
polygon does not share vertex 
with last edge, insert new edge 
connecting them.
• Care must be taken to handle case 

where last edge is split or has end-
point on split-plane.
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References
http://www.gamedev.net/reference/articles/article657.asp

● This is the mother of all BSP references!

http://symbolcraft.com/graphics/bsp/

● Interactive Java applet that builds & views BSP trees

http://en.wikipedia.org/wiki/BSP_tree

● Not too useful, but has links to other resources

http://www.gamedev.net/reference/articles/article657.asp
http://symbolcraft.com/graphics/bsp/
http://en.wikipedia.org/wiki/BSP_tree
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Next week...
BSP trees, part 2

● Advanced split-plane selection

● Intersection tests

Assignment #3, part 2 due.

Assignment #4.

Quiz #3.
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other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.
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