
10-November-2007 © Copyright Ian D. Romanick 2007

Data Structures & Algorithms for Geometry

Agenda:
● Assignment #3, part 1 due

● BSP tree overview
• Node storing
• Leaf storing
• Solid-leaf storing

● Creating BSP trees
• Selecting & evaluating split planes
• Classifying polygons w.r.t. split planes
• Splitting polygons

10-November-2007 © Copyright Ian D. Romanick 2007

Binary Space Partition Trees
As the name implies, this is a binary tree where

each node splits space.
● Each node contains an n-dimensional split plane.

● One child is the positive space of the split plane,
and the other child is the negative space.

Numerous applications:
● Hidden surface removal

● Constructive solid geometry (CSG)

● Collision detection

● Many, many more

10-November-2007 © Copyright Ian D. Romanick 2007

Types of BSP trees
Three common types of BSP tree:

1. Node storing – object geometry stored in inner
nodes and leaf nodes.

2. Leaf storing – object geometry stored only in leaf
nodes.

3. Solid-leaf – positive leaf nodes represent empty
space, negative leaf nodes represent solid space.

10-November-2007 © Copyright Ian D. Romanick 2007

Node Storing
Auto-partitioning

● Meaning split-planes come from object geometry

Each node stores all object surfaces that are
coplanar with the split-plane.

Used to be used for surface sorting for software
rendering
● Doom popularized this technique.

● Not useful for hardware rendering.

● Not good for collision detection, either.

10-November-2007 © Copyright Ian D. Romanick 2007

Leaf Storing
Each inner node stores only the split-plane

● Can be auto-partitioning or general.

● Polygons coplanar to split-planes must be
consistently sent to the positive or negative space.

Geometry stored only in leaf-nodes.

Generalization of k-d trees, quadtrees, octrees,
etc.

10-November-2007 © Copyright Ian D. Romanick 2007

SolidLeaf
Used to represent the volume occupied by input

geometry.
● Every face must be used as a split-plane

● Other planes can also be used as split-planes

Very useful for collision detection
● No need to perform polygon-polygon tests.

● If part of the test polygon is in solid space, there is a
collision.

10-November-2007 © Copyright Ian D. Romanick 2007

Hybrid SolidLeaf / LeafStoring
Extends solid-leaf tree to store polygons in

solid-space nodes.
● Each node stores the polygons visible from that

solid-space.

● Other data can be stored to accelerate eventual
AABB tests.
• We'll talk about this next week.

Popularized by Quake II and Quake III.
● Called brush-storing trees in Quake terminology.

10-November-2007 © Copyright Ian D. Romanick 2007

Construction Overview
Only 3 steps:

1. Select split-plane.

2. Divide polygons into two groups based on split-
plane.
• This may include dividing polygons that straddle the split-

plane.

3. Repeat on each subgroup.
• As with other subdivision trees, stop splitting when we

have few enough polygons or reach a deep enough level.
• May also stop if a good split-plane cannot be found.

10-November-2007 © Copyright Ian D. Romanick 2007

Splitplanes
Split-plane selection determines performance of

final tree
● Just like picking the subdivision of BV hierarchies.

● Ideally we want O(log n) tree depth
• For the same reasons as with regular binary search trees

Two general partition strategies:
● Auto-partition: select planes from the geometry

● General: pick any arbitrary planes

● Hybrid methods also exist
• We'll talk more about these next week.

10-November-2007 © Copyright Ian D. Romanick 2007

Autopartition
Generally easier to implement

● All possible split-planes are known in advance

May result in poor performance
● Any selection of these planes

will result in numerous
polygon splits.

● Selecting other planes initially
may avoid splits.

10-November-2007 © Copyright Ian D. Romanick 2007

Autopartition (cont.)
Auto-partition also performs poorly on convex

objects.
● By definition, all faces lie on one side of each

possible plane.

● The result is no splits, but O(n) tree depth.
 If the search goes outside

early, the search may terminate
faster than O(log n).

10-November-2007 © Copyright Ian D. Romanick 2007

General Plane Selection
A very hard problem.

● Even harder than finding optimal OBB orientation

● Need to narrow the search space

10-November-2007 © Copyright Ian D. Romanick 2007

General Plane Selection
A very hard problem.

● Even harder than finding optimal OBB orientation

● Need to narrow the search space

Try some of the following:
● Planes aligned to the axes

• Like k-d trees

● Planes through the edge of one polygon and a
vertex of another

● Allow user selected hint planes.
• Humans can provide good possible planes early on

10-November-2007 © Copyright Ian D. Romanick 2007

Evaluating Splitplanes
Need some metrics to determine which possible

split-plane is best.

10-November-2007 © Copyright Ian D. Romanick 2007

Evaluating Splitplanes
Need some metrics to determine which possible

split-plane is best.
● Minimize number of polygons split (a.k.a. least-

crossed)
• In the worst case, each split can create n new planes

resulting in O(n2) total planes.

● Balance number of polygons in each subtree.
• Using least-crossed can lead to O(n) tree depth.

Reality: neither heuristic works well in isolation.
● Use some linear combination of score from both

10-November-2007 © Copyright Ian D. Romanick 2007

Polygon Classification
Relative to a split-plane, a polygon can be:

a. Completely in positive half-space

10-November-2007 © Copyright Ian D. Romanick 2007

Polygon Classification
Relative to a split-plane, a polygon can be:

a. Completely in positive half-space

b. Completely in negative half-space

10-November-2007 © Copyright Ian D. Romanick 2007

Polygon Classification
Relative to a split-plane, a polygon can be:

a. Completely in positive half-space

b. Completely in negative half-space

c. Coplanar

10-November-2007 © Copyright Ian D. Romanick 2007

Polygon Classification
Relative to a split-plane, a polygon can be:

a. Completely in positive half-space

b. Completely in negative half-space

c. Coplanar

d. Straddling plane

10-November-2007 © Copyright Ian D. Romanick 2007

Polygon Classification
Relative to a split-plane, a polygon can be:

a. Completely in positive half-space

b. Completely in negative half-space

c. Coplanar

d. Straddling plane

Have to be careful with polygons that are
“close” to the plane.
● Floating point math is not an exact science. If

points are close the the split-plane, the polygon
splitting routine will produce erroneous results.

10-November-2007 © Copyright Ian D. Romanick 2007

Thick Planes
Solve the “close to plane” problem by making

split-planes thick.
● Points within some small distance, , of the plane

are considered to be on the plane.

10-November-2007 © Copyright Ian D. Romanick 2007

Polygon Splitting
Split using modified Sutherland-Hodgman

polygon clipping
● Classify each vertex as in, out, or on.

• Use a 2-bit out-code.

● Each edge is coded with the directed pair of its
vertex out-codes.

● Out-code pair determines what to do with the edge:
• Add to outside polygon
• Add to inside polygon
• Split and add each half to one polygon

10-November-2007 © Copyright Ian D. Romanick 2007

Polygon Splitting (cont.)
 In first 4 cases, order is unimportant:

● Outside ↔ outside or outside ↔ on – add edge to
outside polygon

● Inside ↔ inside or inside ↔ on – add edge to inside
polygon

Only two cases remain:
● Inside → outside

● Outside → inside
• Split edge. Add one half to each polygon.

10-November-2007 © Copyright Ian D. Romanick 2007

Adding Edges
Real brains of algorithm in code to add edges.

● Easy (common) cases: Edge added to polygon
shares vertex with last added edge, link the two
edges.

● Hard case: Edge added to
polygon does not share vertex
with last edge, insert new edge
connecting them.
• Care must be taken to handle case

where last edge is split or has end-
point on split-plane.

10-November-2007 © Copyright Ian D. Romanick 2007

References
http://www.gamedev.net/reference/articles/article657.asp

● This is the mother of all BSP references!

http://symbolcraft.com/graphics/bsp/

● Interactive Java applet that builds & views BSP trees

http://en.wikipedia.org/wiki/BSP_tree

● Not too useful, but has links to other resources

http://www.gamedev.net/reference/articles/article657.asp
http://symbolcraft.com/graphics/bsp/
http://en.wikipedia.org/wiki/BSP_tree

10-November-2007 © Copyright Ian D. Romanick 2007

Next week...
BSP trees, part 2

● Advanced split-plane selection

● Intersection tests

Assignment #3, part 2 due.

Assignment #4.

Quiz #3.

10-November-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Quake II and Quake III are trademarks of id Software.

 Other company, product, and service names may be trademarks or
service marks of others.

